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Efficient dynamic Monte Carlo algorithm for time-dependent catalytic surface chemistry
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Several numerical algorithms for dynamic Monte Carlo simulations of surface chemistry have been proposed
in the past. The variable step size method (VSSM) is commonly used for systems where the rate coefficients
are constant in time, owing to its good efficiency. If rate coefficients vary in time, the first reaction method
(FRM) has been shown to be more efficient. However, the cost of this algorithm to execute a reaction step
depends on the considered lattice size, which can make this method inefficient for systems involving surface
phenomena on different scales. Here we propose a general and efficient algorithm, the fast first reaction method
(fFRM), which has the advantages of being applicable to systems with constant and time-varying rate coeffi-
cients, and of having a computational cost per reaction step that is independent of the lattice size. An additional
feature of fFRM is that it is rejection-free, which means that once a reaction class is selected, a reaction of that
type will be executed. A rejection-free variant of VSSM, called rVSSM, is also presented, which leads to an

approximately 15% speedup compared with the VSSM algorithm for the considered example.
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I. INTRODUCTION

Surface catalysis is important in many practical chemical
applications ranging from catalytic converters to all types of
fuel cells [1,2]. In these catalyst-mediated chemical systems,
bonding of reaction intermediates to the catalyst surface typi-
cally weakens chemical bonds and lowers reaction barriers
[3-6]. It is well known that some of the adsorbates exhibit
electronic interactions among each other of attractive or re-
pulsive nature [7-9]. In such situations, the commonly used
environment-averaged mean-field approach breaks down
[10,11]. An accurate dynamical description of these complex
chemical systems is made possible using stochastic simula-
tions such as dynamic Monte Carlo simulations (DMC).
DMC simulations enable the efficient solution of the master
equation, which governs the time evolution and the dynamics
of a chemical system. The DMC approach was first intro-
duced by Gillespie [12] as “the stochastic simulation algo-
rithm.” Gillespie’s method has subsequently undergone sev-
eral improvements to make such simulations applicable to a
wide range of surface chemistry systems [13-24]. DMC is
also used widely for studying reactive systems in the solution
phase with very small numbers of molecules [25]. It is noted
here that in such applications, unlike surface chemistry DMC
simulations, the locations where reactions may potentially
take place are usually not important. Tracking the positions
efficiently is critical to the performance of algorithms ap-
plied to study surface chemistry, and in this paper, we are
concerned primarily with this class of simulations.

The most widely used DMC algorithm for the simulation
of surface chemistry is the variable step size method (VSSM)
[22]. Different variants of this method have been proposed
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for systems with both time-varying and constant rate coeffi-
cients. Especially if rate coefficients are constant in time, the
VSSMBb algorithm of Lukkien et al. [23], and the continuous
time Monte Carlo (CTMC) method of Reese et al. [24] have
been demonstrated to have remarkable performance. In par-
ticular, it was shown that for these algorithms the computa-
tional cost per time step is independent of the lattice size.
However, both these algorithms cannot be applied for sys-
tems with time-varying rate coefficients [10,23], and the
more general VSSM algorithm is very inefficient for this
case [22]. The first reaction method (FRM) is the method of
choice when the rate coefficients change over time. An in-
herent characteristic of FRM is that the CPU time required
for the computation of a single time step depends on the size
of the simulated catalyst surface, i.e., on the number of cata-
lyst sites [23]. Thus, the performance of FRM deteriorates as
the geometrical area of the catalyst surface is increased. This
dependence can easily be limiting, when systems are studied
that involve surface phenomena on different scales. How-
ever, the performance of FRM is still superior to VSSM for
nonconstant rate coefficients.

Here we present a new algorithm, the fast FRM (fFRM)
algorithm, for which the computation time of a single time
step is independent of the catalyst lattice size, and which can
be applied for cases involving both constant and time-
varying rate coefficients. In essence, fFRM is a new algo-
rithm with the computational efficiency of VSSMb and with
the generality of FRM. Details of fFRM are presented after a
brief description of the DMC approach in general, and the
VSSMb and FRM algorithms, in particular. Subsequently,
the accuracy of the new algorithm is assessed for a case with
time-varying rate coefficients. Finally, the performance of
fFRM is compared with VSSMb, FRM, and rVSSM, which
is a modified version of VSSMb with slightly better perfor-
mance based on the rejection-free feature of fFRM.
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II. DMC APPROACH

In simulations of surface chemistry, the catalyst surface is
represented by a number of sifes, where each site corre-
sponds to a potential location of an adsorbate on the real
catalyst surface. The complete specification of adsorbates
present at every site describes a configuration or state of the
system, and is denoted by the configuration vector c¢. The
probability that the lattice at time 7 appears in a certain con-
figuration ¢ is denoted by P.(r). Each elementary reaction in
the mechanism constitutes a unique reaction type or micro-
process. Not all microprocesses have to be possible for each
configuration, but if a microprocess can take place at some
location on the catalyst surface in the current configuration,
then it is referred to as an enabled event. An executed event
changes a configuration into a different configuration, and is
characterized by both of these configurations. The time evo-
lution and the dynamics of this system are described by the
so-called master equation

WPl) _ S [k Pult) = kerePel1)], M

di ¢/ #c¢

where k.. is the rate coefficient of the event that transforms
configuration ¢’ into configuration ¢. The master equation is
a differential equation for the probability P.(¢) of finding the
system in a configuration ¢, which is derived from first prin-
ciples. P, is a scalar function that has to be solved in D
dimensions, where D is the number of possible configura-
tions. Obtaining a direct solution of this equation for the
general case is not possible for more than just a few sites.
For example, even for a very small system of 2 species and a
3 X 3(100) lattice, the number of possible configurations is
3%, and the solution becomes intractable.

The master equation, therefore, is usually solved using
Monte Carlo methods. Here we provide only a brief discus-
sion of the fundamentals of such methods. Solution methods
have been described in detail by Binder and Heermann [26],
and issues specific to catalytic chemistry have been dis-
cussed in Refs. [23,24,27]. In accordance with the definition
of a rate coefficient, the probability of a state transition ¢
— ¢’ in an infinitesimal time interval dt is kdt [12], where the
subscripts have been dropped from k.. for convenience. The
absolute time of occurrence of the event (or the time of re-
action) is therefore a random variable, denoted here by T'rog.
The probability that the event will occur after the time ¢
+dt is then equal to the probability that the reaction occurs
after time ¢ times the probability that the reaction will not
occur in the time between ¢ and #+dt. This can be written as

P(TTOR =1+ dt) = P(TTOR = t)(l - kdt), (2)

where P() denotes the probability of the event in parenthe-
ses. Rearranging Eq. (2) gives

P(Tror = t+dt) = P(Trog = 1)
dt

=—kP(Trzg =1), (3)

or
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dP(Trr = 1)

it =—kP(Trer = 1). 4)

The term on the left-hand side of Eq. (4) is negative of the
probability density function (pdf) of T-.g. Let T, be the cur-
rent system time. To determine the time increment AT
=Tror— T, to the next transition, the probability P(AT= At)
that this increment is larger than a certain value At can be
obtained by the integration of Eq. (4), allowing k to be time
dependent, which yields

To+At
P(AT= At = exp{—f k(s)ds]. (5)

To

This is equivalent to the probability that the reaction will not
occur within Az. For the case of constant k, Eq. (5) simplifies
to

P(AT = Ar) = exp(- kAr). (6)
The cumulative distribution function (cdf) of AT is then
F(At)=1-P(AT = Ar). (7)

From Eq. (7), AT can be obtained according to the inverse
transform method [23,28]. If U is a uniform random number
in (0,1), then P(U<u)=u, and with F~! being the inverse of
F follows

P[FY(U) = Afl= P[U = F(A1)] = F(Ar). (8)

Hence F(Af) can be represented by F~'(U), where U is
drawn from a uniform distribution, which can be written as

F(AT)=U. ©)

Moreover, Lukkien et al. [23] have obtained the following
theorem based on Eq. (7).

Theorem 1. If enabled reactions are selected with a prob-
ability such that their time of reaction satisfies the distribu-
tion defined in Eq. (7), then the stochastic trajectory of states
generated satisfies Eq. (1) exactly.

In the next section, we will first discuss the VSSMb and
FRM algorithms, and then a new efficient algorithm, fFRM,
which all satisfy Eq. (1) through selecting enabled events
with a probability as required by Theorem 1.

III. DMC ALGORITHMS
A. Event lists

An important distinction between DMC algorithms for
surface chemistry simulations and algorithms for solution
phase is that for surface chemistry, the reactants (adsorbates
or empty catalyst sites) have a unique spatial position. A
complete description of a microprocess therefore inherently
implies, among other things, specification of its exact loca-
tion. All the algorithms described in this paper accomplish
this by using so-called event lists.

Event lists are arrays of structures that store information
about the events that can take place for a given state of the
system. Each element of the event list corresponds to a single
event. In VSSMb and fFRM, events are grouped according
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to their reaction type, and so there is a separate event list for
each reaction type. A single event list is sufficient for FRM.
Furthermore, the information stored for all individual events
depends on the details of the particular DMC algorithm. In
VSSMb and fFRM, for instance, the location and the abso-
lute time when the event first became enabled are stored,
while in FRM the location and Tt,g are stored. New events
are enabled and old events are disabled at every step as a
simulation proceeds to generate trajectories of system states.
Keeping the event lists updated to reflect only enabled events
requires adding the newly enabled events, but also searching
the event lists for disabled events and removing these. This is
computationally very expensive, and must be avoided. Luk-
kien er al. [23] showed that removal of disabled events is not
necessary at all. Instead, once an event is chosen, it is suffi-
cient to check if this event is still enabled before its execu-
tion. If not, the event will be rejected, removed from the list,
and a new event is chosen. This procedure significantly im-
proves performance, and has been used for all algorithms
described in this paper. Another strategy that has been used
for all simulations reported here is that of local update,
wherein after the execution of each event, the search for
newly enabled reactions is conducted only within the inter-
action radius. The interaction radius is the size of the neigh-
borhood of a site, within which the species can either interact
or pair up with the species at that site, considering all pos-
sible microprocesses. The advantage of local updates is that
they make the computational time needed to search for
newly enabled reactions independent of the lattice size. Even
the local update can be made quite efficient. The execution
of an event does not necessarily imply enabling or disabling
of every other reaction type. Lukkien et al. [23] suggested
that if this dependency is precalculated in advance of the
simulation, then performance gains could be achieved. A
general approach for generating such dependencies has been
described by Gibson et al. [25]. Following this idea, a pre-
computed dependency list is used when conducting the local
update for the simulations reported in this paper.

B. VSSMb

The VSSMb method is an efficient algorithm for most
cases, which do not involve time-varying rate coefficients
[23]. A simple description of this method is presented here
for comparison with fFRM. A more detailed discussion can
be found elsewhere [23,24].

Let ¢ denote the current configuration, and L; the event
list for reaction type i. Furthermore, let n; denote the number
of enabled and disabled events in L;, and k; the rate coeffi-
cient for reaction type i, respectively. We define

F(ci) =nik;, Q= E n;, and I = E Fg), (10)

where the summations are over all reaction types.

Algorithm 1. VSSMb.

(1) Initialize. Scan initial surface state to set up event list
L; for each reaction type i.

(2) Select a reaction type to execute. The jth reaction type
is selected based on a uniform random number U, in (0,1)
such that
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(3) Locate an event of reaction type j at a suitable posi-
tion.
(a) An event is selected randomly from the event list
L.

! (b) Check if the selected event is still enabled at the
selected location. If not, reject, remove the event from Lj,
and go to step 5.

(4) Execute the selected event and add newly enabled
events of type i to the list L;.

(5) Increment system time. The increment can be calcu-
lated using

_ In(U,)

AT = s
Q..

(12)
where U, is a uniform random number in (0,1).

(6) Repeat steps 2-5.

VSSMb is restricted to the case of constant rate coeffi-
cients, but the computation time per event is independent of
the lattice size. An alternative formulation of VSSMb, very
similar to the algorithm just described, uses the concept of
classes wherein every event is classified based on the adsor-
bates in its microenvironment [24].

A more general formulation of VSSMb, the VSSM algo-
rithm, which is also applicable to time-varying rate coeffi-
cients can be found in Ref. [22]. VSSM differs from VSSMb
only in the way the time increment is calculated (step 5).
Without going into detail, it suffices to mention here that in
VSSM, instead of using Eq. (12), the value of the time in-
crement At is computed by solving

To+At
expl—f Fc(s)ds] =U, (13)

Ty

where the rate coefficients k;, and hence I',, may vary with
time. In general, solving Eq. (13) takes O(N) CPU time [22],
where N is the number of lattice sites. Hence, simulations
using VSSM are very expensive as the computational time
per time step depends on O(N). A more efficient algorithm
for systems with time-dependent chemistry is the FRM algo-
rithm as proposed by Jansen [22]. This method is discussed
next.

C. FRM

Experimental techniques like cyclic voltammetry (CV)
and temperature-programmed desorption (TPD) are com-
monly used for the characterization of chemical systems.
Simulations of such experiments based on detailed chemistry
present a way for rigorous validation of chemistry models. A
common feature of such experiments is that they involve
chemistry with time-varying rate coefficients because of
variations in electrode potential or temperature. In such
cases, as mentioned before, VSSMb is not applicable [10].
However, the FRM algorithm is an efficient method for

046707-3



RAIL PITSCH, AND NOVIKOV

simulating such systems [18,22]. FRM relies on explicitly
storing every single enabled event on the surface along with
the corresponding Tr.r in a list. The list is constructed as a
so-called priority queue, which means that all events are
sorted according to their execution time 7Tk in a tree-based
data structure. The next event selected is then the one which
is the nearest in time, i.e., the event with the smallest Tygg.
Algorithm 2. FRM.
(1) Initialize.
(a) Scan initial surface state for enabled events.
(b) Tror for each event is generated according to Eq.
7).
(c) The position and Tr.g of enabled events are stored
in a single list of events, L.
(2) Event selection.
(a) Select the event with the smallest Trpog.
(b) Check if the selected event is still enabled. If not,
remove the event from L, and go to step 5.
(3) Update state information.
(a) Execute the selected event.
(b) Add newly enabled events to L. Use Eq. (7) for
generating the new Tp,g values.

(4) Change system time to Tr.g of the just-considered re-
action.

(5) Repeat steps 2-4.

A priority queue is used to store the events in L based on
the Tro,r- Such a storage scheme ensures that the selection
process [step 2(a)] takes O(1) operations: the event with the
smallest Tr.g is the first element in L. Further, for priority
queues, the computational cost of each event removal and
insertion process encountered in steps 2(b) and 3(b), respec-
tively, is O(log, H), where H is the number of events in L
and it scales with the number of lattice sites N. A close look
at FRM reveals that the computationally demanding step is
the removal/insertion of events, which takes O(log, H) op-
erations. It is noteworthy that for a complex chemical
mechanism, more than one microprocess may be enabled per
site, and so the number of events in the event list H can even
be larger than the number of lattice sites N. Thus, the com-
putation time per simulated reaction in FRM depends on the
logarithm of the lattice size [23], a fact that is potentially
limiting for simulating systems of large lattice size.

IV. NEW DMC ALGORITHM: fFRM
A. Overview

The key idea is based on the observation that reaction
times for the events of the same reaction type are mutually
independent and identically distributed (iid), and the distri-
bution is given by Eq. (7). From the perspective of simulat-
ing surface chemistry, this means that for all n.,; enabled
events of the same reaction type j (and stored in the event list
L)), the minimum 7o can be directly computed, even in the
most general scenario of time-dependent rate coefficients, as
will be discussed below. The computational gain comes from
the fact that, unlike FRM, it is no longer necessary to gen-
erate and sort Ty,g for every single enabled event. Instead,
the smallest 7p,r can be found by first determining the small-
est time of reaction for each individual reaction type, and
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then finding the minimum of these times. This can be written
as

min(Tr,r V enabled events) = min(Tror ),  (14)
j=1r

where r is the number of reaction types, Tpog ; is the mini-
mum of the times of reaction among all enabled events of the
reaction type j, and the minimum on the right-hand side of
Eq. (14) is found over all reaction types. The reaction type
corresponding to the minimum value on the right-hand side
of Eq. (14) is selected for the next time step. Further, since
the enabled events of a specific reaction type are iid, the
location of the site where the next event will be executed can
be selected randomly from the event list of that reaction type.
This idea is the core of fFRM. Clearly, fFRM achieves ex-
actly the same task as FRM, but more efficiently. Note that
storing Tr.g for individual events in a priority queue is not
required in fFRM. Instead, the T ; values for each reaction
type j are stored in a priority queue. Thus, as opposed to
FRM, where computational time of every time step depends
on log, H, in fFRM computational requirements per time
step depend on log, r, thereby making the performance of
fFRM independent of the lattice size. The problem of finding
the minimum time for all events of the same reaction type is
considered next.

All enabled events in L; are iid, and hence, their Trg
have the same cdf, say F;(x). Then 1-F,(x) is the probability
that T, for a specific enabled event in L; is greater than x.
Using the independence of these events, {1-F;(x)}* is the
probability that g for two of these events is greater than x,
and so on. This implies that {1—F;(x)}"=/ is the probability
that Trog j, the shortest reaction time in reaction class j, is
larger than x. The cdf F j(x) of Ty is therefore given as

Fij(0) = 1= {1 = F;(x)y"ens. (15)

A general proof for this relation based on order statistics is
presented in the Appendix.

B. Determination of T ;

Two examples are presented here to further clarify how to
generate Trog ; using Eq. (15) for reaction type j with the
number of enabled events in L; equal to n, ;. In both these
examples, AT denotes the time increment corresponding to
TR -

Example 1. Constant rate coefficient, kj. The distribution
for the time interval of occurrence of a specific reaction with
a constant rate coefficient k; was already derived in Eq. (6).
Thus, using Egs. (7), (9), and (15), AT can be calculated
from

1 ={1-[1-exp(=kAT)]}"eni = U.
Solving for AT gives

In(U’
TToR,j=T0+AT=T0——( ), (16)
en,jVj
where U'=1-U is a uniform random number in (0,1)
[29-31].
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Example 2. Time-dependent ki(t). In systems with time-
varying rate coefficients, the integral in Eq. (5) should be
used. The variation of the rate coefficients with time will
depend on the system being considered. Here we present an
example of an electrochemical system in which the rate co-
efficients have an exponential dependence on the system
time.

Useful information about details of elementary reaction
steps and chemical species involved in electrochemical sys-
tems (systems involving electron transfer) can be obtained
by the CV technique. The basic idea of CV is to study the
current response of the system as the electrode potential is
varied as a function of time. Different species and reactions
usually produce specific “signatures” on such current-
potential diagrams, which makes their identification possible.
The rate coefficient for an electrochemical process depends
on the electrode potential. Thus, in CV, the electrochemical
rate coefficients are time dependent too. This dependence is
usually expressed as the Butler-Volmer law

aFE(f) )
RT )°

ki(t) = k;-) exp( (17)

where k; is a temperature-dependent rate coefficient in

Arrhenius form and F, R, and T are the Faraday’s constant,
the universal gas constant, and temperature, respectively. k;)
and « are constants. For a linear sweep CV with sweep rate
v, the electrode potential is

E(t)=Ey+ vt. (18)
Thus, using Eq. (5) we have
To+At
P(AT = Ar) =exp| - ij exp(Cs)ds |,
Ty

where B j=k;) exp(aFEy/RT), and C=aFv/RT. Integration of
the above equation combined with Eq. (7) gives the cdf for
the time interval of occurrence for this reaction,

F(An=1- exp[— %{exp[C(To +An] - exp(CTo)}] .
(19)

Finally, using Egs. (9) and (15) we get

1
TTOR,j=TO+AT=E ln[exp(CTO)— In U,:|

nen,j J
Note that this expression depends on the specific form of the
rate coefficients, which is given here by Eq. (17). It is worth
mentioning that for avr<<0 (i.e., C<0) using Egs. (15) and
(19) gives

B.
lim[1-F, (Af)]= exp[nL“(’;u exp(CTO)] ,

At—oo

implying that there is a finite probability that the time incre-
ment for T ; is infinitely large, or in other words, that none
of the events of this reaction type will occur at all.

PHYSICAL REVIEW E 74, 046707 (2006)

C. Algorithmic steps in fFRM

Algorithm 3. fFRM.

(1) Initialize.

(a) Scan initial surface state to set up event list L; for
each reaction type j.

(b) Draw Tt ; according to Eq. (15) for [ =j=r.

(2) Select i such that Trog ;/=min(Treg ;) for 1=j=r.

(3) Locate an event of reaction type i at a suitable posi-
tion.

(a) An event is selected randomly from the event list
Li.

(b) Check if the selected event is still enabled at the
selected location. If not, remove the event from L;, and re-
start step 3.

(4) Update state information.

(a) Execute the selected event.

(b) Add newly enabled events to L; for j € S;, where
S; denotes the set of reaction types for which at least one
new event was enabled following step 4(a).

(c) Use local update to track the number of events that
were disabled, and accordingly change n,, ; for j € S,, where
Nep j is the number of enabled events in L;, and S, denotes the
set of reaction types for which at least one event was dis-
abled following step 4(a).

(d) Redraw Tt ; according to Eq. (15) with n, ;, for
j (S Sl ] Sz.

(5) Change system time to Ttog ;.

(6) Repeat steps 2-5.

It is noteworthy that the way of storing and locating
events for execution in fFRM is similar to that of VSSMb
(steps 1 and 3), while the selection of the next microprocess
in fFRM is similar to that in FRM (step 2). This way the
computationally expensive task of dealing with priority
queues for all events is avoided. Another characteristic of
fFRM is that it is rejection-free: the use of n, ; in generating
T'ror j guarantees that a reaction type selected in step 2 will
be executed by continuing step 3 until an enabled event is
located. Note that all that is required is an accurate count of
enabled events in each event list. So, as in VSSMb and FRM,
there is no need to search for the disabled events in the event
lists and remove them. In fact, the disabled events are still
left in the event lists, and dealt with in the same way as
explained in Sec. IIl A. Thus, keeping n,, ; updated at every
step requires nominal computational cost because of using a
local search approach. It will be shown in Sec. VI that this
also leads to an improvement in performance compared with
VSSMD, since the selection step (step 2 of VSSMb and
fFRM) does not have to be redone when disabled events are
encountered. The same approach can be applied to modify
VSSMb to make it rejection-free as well. In this modified
VSSMb, which we will refer to as r'VSSM, n,; is used in
place of n; in Eq. (10), and steps 3 and 4 are replaced with
the corresponding steps of fFRM, with the exception of step
4(d).

We end this section with a discussion of two other effi-
cient DMC algorithms applicable to systems with time-
dependent rate coefficients. The first one is the generalized
waiting time (GWT) Monte Carlo algorithm proposed by
Prados et al. [30]. The GWT algorithm is essentially the
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same as the VSSM algorithm [22], but with an efficient,
although approximate, approach for computing the time in-
crement. In GWT, the time domain is discretized into inter-
vals of the same or varying lengths and the total transition
rate I', is considered as constant inside each of these inter-
vals. With this approximation, a simple iterative scheme is
set up for computing the time increment. Thereby, the need
to solve Eq. (13) is avoided. Intervals of smaller length im-
prove the accuracy of this approach, but come at the cost of
increased number of iterations for determining the time in-
crement, meaning more CPU time per time step. Further, the
efficiency of the iterative scheme diminishes for small values
of T'.. Another efficient algorithm, very similar to fFRM
in concept, has been described by Segers [31]. Segers’
algorithm is a hybrid of VSSM and FRM, and its computa-
tional cost per time step is also independent of the lattice
size. The main difference between Segers’ algorithm and
fFRM is that in the former algorithm the time increment
for reaction type j is computed from the distribution
1—exp[—S ;g”’n ki(s)ds]. The use of n;, the total number of
enabled and disabled events in the event list L;, instead of
ey causes the time evolution in Segers’ algorithm to be
approximate, whereas the time evolution in fFRM is always
exact.

V. ACCURACY OF fFRM

A model involving the electrochemical adsorption and de-
sorption of an ion on a (100) catalyst surface was used to
assess the accuracy of fFRM. The system has both time-
dependent rate coefficients and adsorbate interactions. The
elementary steps in the model mechanism are [32]

ky
A+ *=A"+e. (20)
k_y
It is assumed that the rate coefficients of the elementary re-
actions steps depend on the electrode potential according to
the Butler-Volmer expression. Accordingly, the rate coeffi-
cients can be expressed as

FE nBeAA
k= k0 <a ) (—A—) 21
1= R EXP T JRP RT @1
(1—a)FE> (nA(l—B)eAA)
ko =k° (— . (22
_1=kZ exp RT )P »T (22)

where * and A represent an empty catalyst site and an ad-
sorbed species, respectively. €4, is the repulsive interaction
between two A* occupying neighboring sites, 7, is the num-
ber of neighboring sites occupied by an A species, « is the
transfer coefficient, B is the Bronsted-Hammond factor
specifying the extent to which the repulsive interaction influ-
ences the transition state, and E is the electrode potential as
defined in Eq. (18). The potential is varied linearly with a
sweep rate of ¥=100 mV s~!. Note that because the atomic
arrangement of the considered surface is (100), every atom
has four nearest neighbors. Thus, n, can take integer values
between O and 4. This leads to five different rate constants
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FIG. 1. Coverage-potential curve for the mechanism given by
Egs. (20)—(22). The solid line and circles are simulation results for
fFRM and FRM, respectively. Squares are FRM simulation results
of Koper et al. [32]. For clarity, only a few points are shown for the
FRM simulation results of this work as well as of Ref. [32]. Param-
eter values used: V=0.02 57!, k%, =10* s, T=300K, €,4=4RT,
=100 mVs~!, @=0.5, 8=0.5.

each for the adsorption as well as the desorption processes.
So r=10 for this model system. Results of simulations from
FRM and fFRM along with the FRM results of Koper et al.
[32] are presented in Fig. 1 and show good agreement. All
simulations were done on a 256 X 256 square lattice. There
was no appreciable change in results by increasing the lattice
size. It is worth mentioning that the plateau observed at cov-
erage around 6,=0.5 is due to the formation of an ordered
2 X2 adsorbate overlayer, which is a direct consequence of
adsorbate interactions. Mean-field approximations have been
found to fail in capturing such phenomena [32].

VI. PERFORMANCE OF DMC ALGORITHMS

In order to facilitate comparison with VSSMb, which es-
tablishes the benchmark in performance for systems with
constant rate coefficients, but which cannot be applied for
simulations of systems with time-varying rate coefficients,
the reaction mechanism used for the comparison of the per-
formance of the algorithms discussed above is [24]

kp

k3
C+ *=C,
ks

ky
A*HB*,
ks
B'—C".
Note that, although the exact values of the CPU times will
change for a different chemical mechanism, the dependence
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FIG. 2. CPU time needed by different algorithms for simulating
5X 100 reaction steps at steady state. The chemical mechanism is
discussed in the text. The leftmost data points correspond to a 64
X 64 square lattice while the rightmost data points correspond to a
1024 X 1024 square lattice.

of the CPU times on the lattice size for the different algo-
rithms will not change, and hence, the conclusions presented
below will hold in general. Values of the rate coefficients
(s7!) used for the simulations are k;=2, k_;=0.01, k,=1.0,
k_,=0.02, k3=3, k_3=10, k4=1, ks=10. The gas phase con-
centrations are held constant at y,=0.8, yz=0.1, and y,
=0.1. All the rate coefficients of this chemical mechanism
are constant, and hence, VSSMb can also be applied. All
simulations were performed on a 3.0 GHz Pentium Xeon
processor with 1 MB L2 cache. Time needed for initializa-
tion and I/0O was excluded from the results. A plot of the
CPU time versus log, N is shown in Fig. 2. The solid curves
show the CPU time needed for simulating 5 X 10° reactions
in steady state. FRM clearly has a very marked dependence
on the lattice size. As expected from the algorithm, the de-
pendence is almost linear in log, N. It is also interesting to
note that even for a relatively small lattice size of 64 X 64
(log, N=12), FRM s substantially more costly than both
other algorithms. The computational cost for both VSSMb
and fFRM should be expected to be independent of lattice
size. However, both show a weak dependence. This depen-
dence is attributed to the effect of the CPU cache [33]. The
larger cluster sizes lead to more cache misses, and hence to a
slight increase in computational time for increasing cluster
sizes. The same small increase in computational cost can also
be observed for FRM as a slight increase over the linear
behavior in log, N for large N. The influence of the cache is
confirmed by the plot of the total number of function calls
versus log, N in Fig. 3. Although the number of total func-
tion calls remains almost constant for fFRM, the CPU time
increases with lattice size, demonstrating that only the time
per function call increases, not the number of function calls.
It is worth mentioning here that a lower number of function
calls for an algorithm does not necessarily mean a lower
computational cost, since different algorithms make use of
different functions. Nevertheless, within the same algorithm,
the number of function calls is a direct indicator of compu-
tational cost. Note that the performance of fFRM is slightly
better than VSSMb throughout the simulations owing to the
rejection-free character of the fFRM algorithm. A similar im-

PHYSICAL REVIEW E 74, 046707 (2006)

©
w
oL
c F
e [
©
o |
23r
s [
et
2'_4:. I £ /x —A
s —
L Ct it u, i} —0
1 1 1 1 ) 1
12 14 18 20

16
logoN

FIG. 3. Total number of function calls for simulating 5 X 10°
reaction steps at steady state of the chemical mechanism discussed
in Sec. VI. Different algorithms use different functions, and so a
lower number of function calls does not necessarily translate into
lower computational cost. Nevertheless, within the same algorithm,
the number of function calls is a direct indicator of computational
cost.

provement in performance is obtained for rVSSM as well.
The number of function calls is significantly lower for
rVSSM as compared with VSSMb, which leads to lower
computational cost per simulated reaction step as can be seen
in Fig. 2. Although the application of rVSSM is still limited
to systems with constant rate coefficients, it can be expected
that rVSSM can lead to marked performance gains over
VSSMb, especially for systems that give rise to event lists
with a large fraction of disabled events. On the other hand,
for complex chemical systems with a large number of reac-
tion types, the computational cost of updating n, ; may be
substantial, in which case VSSMb might have a better per-
formance than rVSSM.

VII. CONCLUSIONS

A general DMC algorithm, fFRM, was developed for ef-
ficient simulations of surface chemistry. In fact, to the best of
our knowledge, fFRM is the first DMC algorithm for which
the performance is independent of the lattice size even for
systems with time-varying rate coefficients, which makes it
applicable to the study of a wide range of chemical systems
on large lattice structures. This significant improvement is
achieved by an algorithmic formulation that makes it pos-
sible to forego the need to store events in a priority queue
data structure, a step that contributes to most of the compu-
tational cost associated with using the FRM algorithm. Fur-
ther, fFRM is also rejection-free in that the execution of a
reaction type, which is selected to occur next, is guaranteed.
The major advantage of fFRM is that it has approximately
the same CPU cost as VSSMb, but in contrast is generally
applicable to systems with constant and time-varying rate
coefficients. It is also shown that the rejection-free feature of
the fFRM algorithm can be combined with the VSSMb algo-
rithm, which then leads to the rejection-free rVSSM, which,
in the example considered here, leads to an approximately
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15% CPU cost reduction. rVSSM, like VSSMD, is applicable
only to systems with constant rate coefficients.
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APPENDIX

The most basic order statistics problem can be posed as,
“Given a set of random variables X, X,, ... ,X,, reorder the
set so that Y, =Y,=---=Y,.” Y; is called the ith-order sta-
tistic. Clearly, ¥,=min(X;). Let F(x) denote the cdf of X,
which are assumed to be iid. Realizing that if ¥;=ux, then ar
least i of the n random variables are smaller or equal to x, the
cdf of Y; is given by [34]

Fix)=P(Y;=x)

=2 (F@I1 - F@y™

F®) n! . 4
:J ms’_l(l —s)"'ds.  (Al)
0 i-1)!(n=i0)!

The last equality can easily be verified using integration by
parts. Specifically, for i=1 in Eq. (A1) we have

Fi(x)=1-{1-F()}", (A2)

in accordance with Eq. (15).

All DMC algorithms are designed so that Eq. (4), or
equivalently Eq. (7), is satisfied for every event. FRM ex-
plicitly satisfies this requirement at every step by generating
the times for individual events according to Eq. (7). The
following theorem proves that fFRM achieves the same task.

Theorem 2. The cdf of execution times for each enabled
event in fFRM is the cdf given by Eq. (7).

Proof. Let us consider the group of enabled reactions in
reaction type j. If the complete order statistics for T, of the
events of this group is generated according to Eq. (Al), the
probability that the T'rg for a specific reaction in this group
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is the ith-order statistic Y; is 1/n,, ;. Note that the cdf F(x) in
Eq. (A1) is given by Eq. (7). Evidently the pdf for the T'rog
of this particular reaction is given by

1" dF,(x)

f=—2X (A3)
nen,j i=1 dx
Now the pdf of ¥; can be obtained from Eq. (Al) as
dF(x) d [V ! . ‘
drix) =— —_— L —s=1(1 = 5)"ds
dx dx)y (@(-1)!m-i!
) dF
= ()P - W) (Ad)
dx
Using the result of Lemma 3 in Eq. (A3) gives
1 dF(x) dF(x)
fx)=— = : (AS)

en,j —
Nepj dX T dx

This shows that the cdf of the Ty,g for the specific event
under consideration, and hence for any other enabled event
of this reaction type, is [3f(x)dx=F(x). [ |
Lemma 3. E:’zli(';)F(x)"‘l[l—F(x)]”"'=n.
Proof. Using the binomial theorem we have
1={F() +[1- F@I" = 2 () F@T1 - FoT™.
i=0
(A6)

Differentiation of both sides of the above equation with re-
spect to x gives

n

dF ) .
0=—> (")F~'(1 = F)""'[i - nF],
dxiZo
which can be rewritten as

n n

1 nY\ i n—i _ n\pic1 _ p\n—i
(1_F)§(i)lF '(1-F) —(1_F)§(i)F(1 )",

where the variable x was dropped for convenience. Finally,
using Eq. (A6) in the equation above we find that

i(")F~'(1 - F)" =n.

n
=1
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